Machine learning for health data science, fuelled by proliferation of data and reduced computational costs, has garnered ...
Objective This study reviewed the current state of machine learning (ML) research for the prediction of sports-related injuries. It aimed to chart the various approaches used and assess their efficacy ...
Microelectromechanical systems (MEMS) electrothermal actuators are widely used in applications ranging from micro-optics and microfluidics to nanomaterial testing, thanks to their compact size and ...
After uncovering a unifying algorithm that links more than 20 common machine-learning approaches, researchers organized them into a 'periodic table of machine learning' that can help scientists ...
14don MSN
Automating microfluidic chip design: Hybrid approach combines machine learning with fluid mechanics
Researchers led by Assoc. Prof. Dr. Savaş Taşoğlu from the Department of Mechanical Engineering at Koç University have ...
Effect of KROS 101, a small molecule GITR ligand agonist, on T effector cells, T reg cells and intratumoral CD8 T cell cytotoxicity. Phase 1 study of DK210 (EGFR), a tumor-targeted IL2 x IL10 dual ...
Researchers sought to determine an effective approach to predict postembolization fever in patients undergoing TACE.
A recent study, “Picking Winners in Factorland: A Machine Learning Approach to Predicting Factor Returns,” set out to answer a critical question: Can machine learning techniques improve the prediction ...
Zero knowledge proofs enhance transparency while maintaining confidentiality in decision-making processes. Lagrange is ...
Morning Overview on MSN
Machine learning is turbocharging cheap lithium-ion battery design
Lithium-ion batteries have become the quiet workhorses of the energy transition, but the way they are designed and tested has ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results